Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract Research shows that certain external factors can affect the mental health of many people in a community. Moreover, the importance of mental health has significantly increased in recent years due to the COVID-19 pandemic. Many people communicate and express their emotions through social media platforms, which provide researchers with opportunities to examine insights into their opinions and mental state. While social sensing studies using social media data have flourished in the last decade, many studies using social media data to detect and predict mental health status have focused on the individual level. In this study, we aim to generate a social sensing index for mental health to monitor emotional well-being, which is closely related to mental health, and to identify daily trends in negative emotions at the city level. We conduct sentiment analysis on Twitter data and compute entropy of the degree of sentiment change to develop the index. We observe sentiment trends fluctuate significantly in response to unusual events. It is found that the social sensing index for mental health reflects both city-wide and local events that trigger negative emotions, as well as areas where negative emotions persist. The study contributes to the growing body of research that uses social media data to examine mental health at a city-level. We focus on mental health at the city-level rather than individual, which provides a broader perspective on the mental health of a population. Social sensing index for mental health allows public health professionals to monitor and identify persistent negative sentiments and potential areas where mental health issues may emerge.more » « lessFree, publicly-accessible full text available December 1, 2025
- 
            Abstract The COVID-19 pandemic brought unprecedented changes to various aspects of daily life, profoundly affecting human mobility. These changes in mobility patterns were not uniform, as numerous factors, including public health measures, socioeconomic status, and urban infrastructure, influenced them. This study examines human mobility changes during COVID-19 in San Diego County and New York City, employing Latent Profile Analysis (LPA) and various network measures to analyze connectivity and socioeconomic status (SES) within these regions. While many COVID-19 and mobility studies have revealed overall reductions in mobility or changes in mobility patterns, they often fail to specify ’where’ these changes occur and lack a detailed understanding of the relationship between SES and mobility changes. This creates a significant research gap in understanding the spatial and socioeconomic dimensions of mobility changes during the pandemic. This study aims to address this gap by providing a comprehensive analysis of how mobility patterns varied across different socioeconomic groups during the pandemic. By comparing mobility patterns before and during the pandemic, we aim to shed light on how this unprecedented event impacted different communities. Our research contributes to the literature by employing network science to examine COVID-19’s impact on human mobility, integrating SES variables into the analysis of mobility networks. This approach provides a detailed understanding of how social and economic factors influence movement patterns and urban connectivity, highlighting disparities in mobility and access across different socioeconomic groups. The results identify areas functioning as hubs or bridges and illustrate how these roles changed during COVID-19, revealing existing societal inequalities. Specifically, we observed that urban parks and rural areas with national parks became significant mobility hubs during the pandemic, while affluent areas with high educational attainment saw a decline in centrality measures, indicating a shift in urban mobility dynamics and exacerbating pre-existing socioeconomic disparities.more » « lessFree, publicly-accessible full text available December 1, 2025
- 
            While virtual learning environments have dominated for the past few years due to the pandemic, the effectiveness of hands-on activities has been gaining attention again. The participation of college students in community outreach programs was once widespread, but their role as active contributors to primary education has not been studied in depth. This study aims to create a space for a convergent STEM educational program that can benefit both the participating college students and the elementary school kids who can learn from those students. As a pilot project, the authors aim to present how they set up the program from the engineering students’ perspective first in this paper. The educational materials used for this study and the project procedure are described in detail, along with some positive results from the participating engineering students in the program.more » « less
- 
            null (Ed.)This paper introduces a spatiotemporal analysis framework for estimating hourly changing population distribution patterns in urban areas using geo-tagged tweets (the messages containing users’ geospatial locations), land use data, and dasymetric maps. We collected geo-tagged social media (tweets) within the County of San Diego during one year (2015) by using Twitter’s Streaming Application Programming Interfaces (APIs). A semi-manual Twitter content verification procedure for data cleaning was applied first to separate tweets created by humans from non-human users (bots). The next step was to calculate the number of unique Twitter users every hour within census blocks. The final step was to estimate the actual population by transforming the numbers of unique Twitter users in each census block into estimated population densities with spatial and temporal factors using dasymetric maps. The temporal factor was estimated based on hourly changes of Twitter messages within San Diego County, CA. The spatial factor was estimated by using the dasymetric method with land use maps and 2010 census data. Comparing to census data, our methods can provide better estimated population in airports, shopping malls, sports stadiums, zoo and parks, and business areas during the day time.more » « less
- 
            null (Ed.)This paper presents a series of social media analytic methods with geographical context which are useful for understanding public discourse in different cities regarding social and political issues through content analysis and social network analysis. Moreover, this study shows that geographical context should be considered in understanding social media discussion in different cities by using a case study, the 2017 tax bill issue in the US. While previous studies mainly focused on examining non-spatial aspects in online discourse, this study attempts to explain how geographical contexts play a role in shaping the discourse in cyberspace. We found out that point mutual information (PMI) analysis and retweet social network analysis are two effective methods to compare public discourse among different cities. The results of this study indicate that topics and the information diffusion networks regarding the issue reflect the characteristics of each city.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
